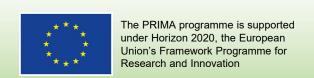


CIPCA 2025

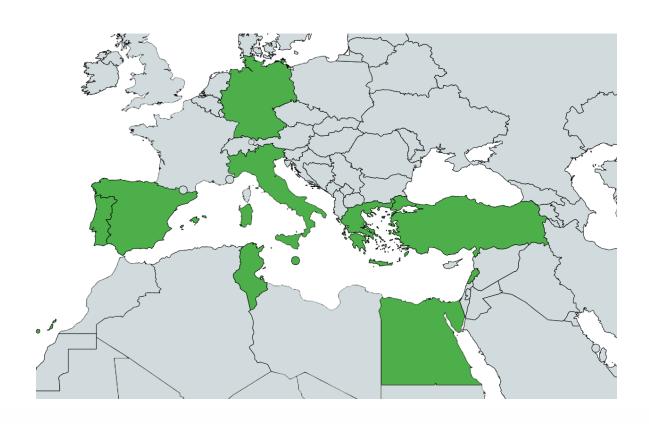
Advancing Alternative Proteins in the Mediterranean Region

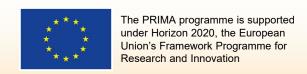
Midterm Results and Technological Insights

Prof. Dr.-Ing. Özlem Özmutlu Prof. Dr. Halil Mecit Öztop

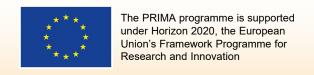


PORTO




ProxIMed

Exploration and Implementation of Products with Alternative Proteins in Mediterranean Region



ProxIMed's Mission

- ProxIMed aims to revolutionize protein consumption in the Mediterranean region through innovation and sustainability.
- The project focuses on developing over **20 alternative protein products** with the active involvement of consumers, industry partners, and innovative technologies.
- > By reducing environmental impact, improving food security, and enhancing food choices, ProxIMed strives to shape a healthier and more sustainable future for the Mediterranean population.

Visual Summary of ProxIMed

Traditional alternative protein sources

Faba Bean Chia Seed

Terrestrial sources Mallow

Tomato Leaves

Aquatic sources

Microbial sources

Duckweed

Microalgae

Mycoprotein

Insects

Agri-food by products

Tomato pomace Dates by products Sesame cake

Market Launch of the New Alt-Proteins

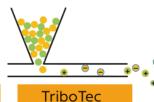
With the help of industrial partners (TAT, UL, FFL, PS), selected products will be launched in Turkish and Tunisian markets.

Pre-processing/Extraction/Fractionation Methods

Microwave Heating

Microwave Vacuum Drying

Supercritical Fluid Extraction


Ultrasonication(US)

In Liquid Plasma

Microfluidization

Product Nutrition, Safety & Health Aspects

Allergenicity

Bio-accessibility

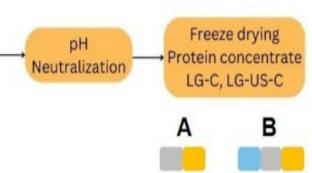
Bioavailability

Consumer

Quality

Sensory

Economic

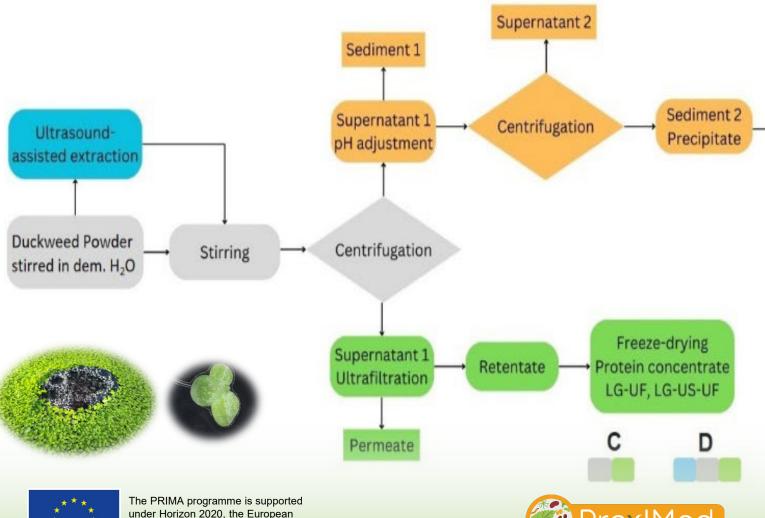

Sustainability

RESEARCH

Optimization of Protein Extraction from Duckweed Using Different Extraction Processes

Patricia Maag^{1,4} · Sara Cutroneo⁵ · Tullia Tedeschi⁵ · Sabine Grüner-Lempart³ · Cornelia Rauh⁴ · Özlem Özmutlu Karslioglu^{1,2}

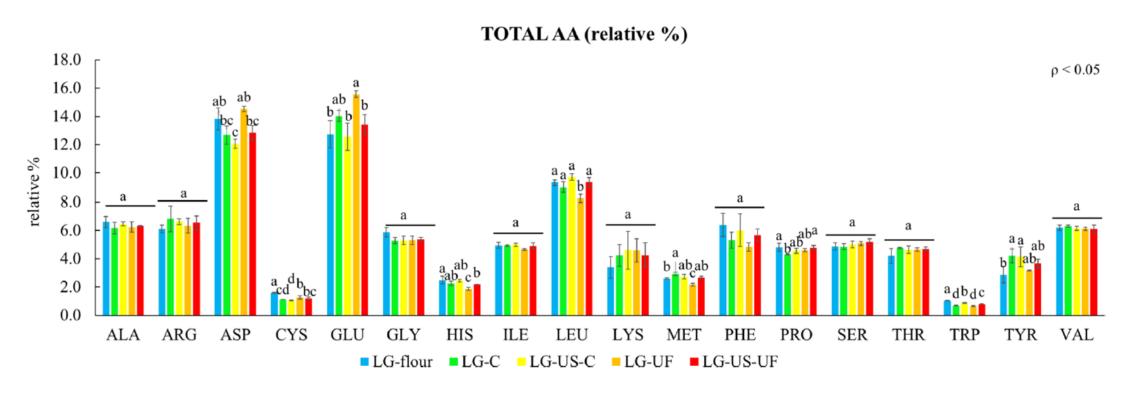
Received: 25 October 2024 / Accepted: 4 February 2025 © The Author(s) 2025



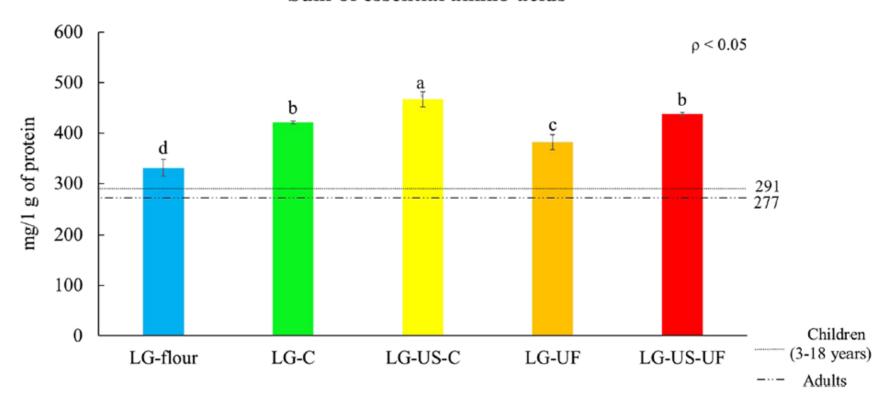
A: conv. wet chemical extraction (LG-C)

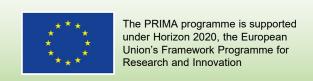
B: with prior additional UAE (LG-US-C)

C: ultrafiltration (LG-UF)


D: UF with prior UAE (LG-US-UF)

Union's Framework Programme for Research and Innovation


Total amino acidic profile expressed as relative % of amino acid on total protein



Sum of essential amino acids

Children (3–18 years)	His	Ile	Leu	Lys	SAA	AAA	Thr	Trp	Val
LG flour	1.15	1.21	1.12	0.52	1.34	1.66	1.24	1.16	1.14
LG-C	1.30	1.51	1.36	0.81	1.62	2.13	1.76	0.97	1.45
LG-US-C	1.51	1.64	1.57	0.94	1.63	2.45	1.83	1.30	1.51
LG-UF	1.05	1.40	1.22	0.87	1.34	1.76	1.68	0.90	1.38
LG-US-UF	1.31	1.57	1.47	0.85	1.62	2.19	1.81	1.16	1.47
Adults	His	Ile	Leu	Lys	SAA	AAA	Thr	Trp	Val
LG flour	1.22	1.21	1.16	0.55	1.40	1.79	1.34	1.28	1.17
LG-C	1.38	1.51	1.41	0.87	1.69	2.30	1.91	1.06	1.48
LG-US-C	1.61	1.64	1.62	1.01	1.70	2.64	1.98	1.43	1.55
LG-UF	1.12	1.40	1.26	0.93	1.40	1.90	1.83	0.99	1.42
LG-US-UF	1.40	1.57	1.52	0.91	1.69	2.36	1.97	1.28	1.50

Terrestrial Sources: Mallow Leaf Proteins

- The mallow leaf (*Malva sylvestris* L.) was collected from the garden in Bayındır district of Izmir in November 2023 (Fig. 1).
- Total dry matter content of mallow leaf was 21.52±0.03% and the protein content of mallow leaf in dry basis was found 44.18±0.23%.

Fig. 1. The mallow leaf

Isoelectric Precipitation

The buffer solution was added to mallow leaves and the mixture was homogenized with using homogenizer (Daihan, HG-A5A). Then, the mixture was arranged in water bath at a certain temperature for 30 min to extract proteins into the solvent. After that, the mixture was filtered with cheesecloth and then centrifuged (6000 rpm, 20 min) to remove fiber part. The pH value of supernatant was adjusted to 3.5 and stirred for 30 min and then centrifuged (6000 rpm, 30 min). The pellet was freeze-dried (Liyolife) at -48 °C for 15 h. In ultrasound assisted extraction, the ultrasound was used before the extraction process, and it continues in the same way afterwards.

pre-heating (55 °C) + ultraturax 5 min

ULTRASOUND ASSISTED EXTRACTION YIELD:%60.04

Extraction Temperature:

55°C

pH value: 10

Extraction time: 30 min Solution/solid ratio: 10

mL/g

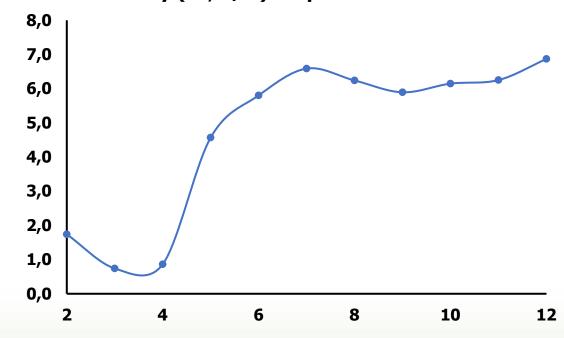
20 min Ultrasound

Mallow leaves (30.147 g) 59.01% protein 1.72 g protein powder

To determine the effect of **mechanical disruption** on protein extraction from mallow leaves and increase protein yield, extraction was performed under optimum conditions with the addition of pre-heating (55 °C) and increasing the ultraturax time by 5 min. With this method, it was determined that the protein yield reached %60.04.

Terrestrial Sources: Tomato Leaves

Initial tomato leaves crude protein content on dry basis: approx. 25%

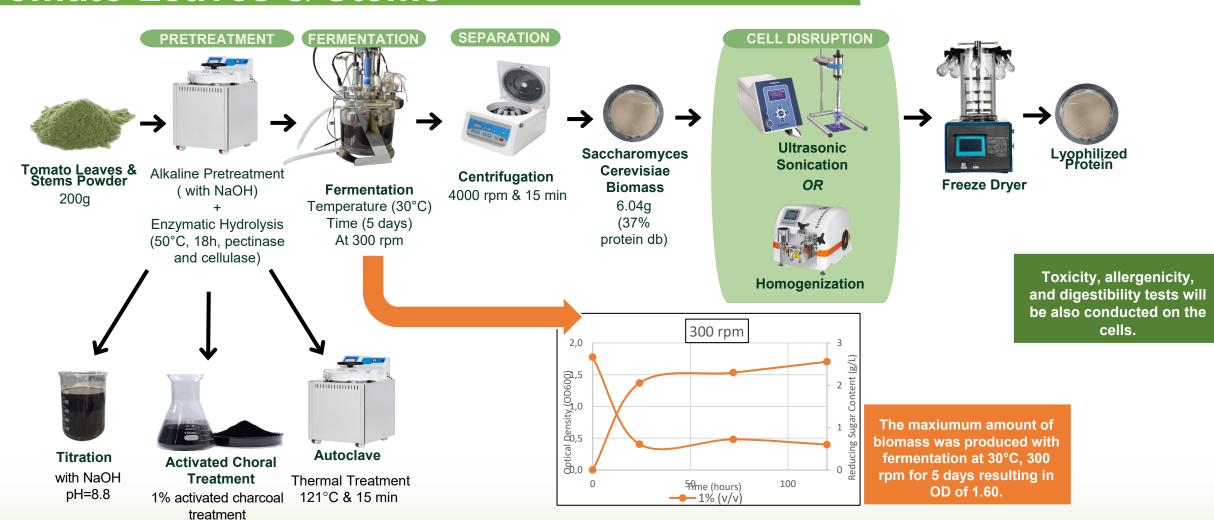


- Experiments are still at the initial stages of optimization
- A solubility curve was determined to determine the suitable extraction pH and isoelectric point which was found to be 3.0

Alkaline – Isoelectric point extraction is currently being done

- PROBLEMS FACED: Yield from first trials was too low to analyse the sample.
- More trials will be done to understand the protein content and recovery yield of extracts

Solubility (%,w/w) vs. pH for tomato leaves



Production of Single-Cell Protein from Tomato Leaves & Stems

The PRIMA programme is supported under Horizon 2020, the European Union's Framework Programme for Research and Innovation

Agro-food by products: Tomato Pomace

Tomato Pomace

*Initial tomato pomace crude protein content on dry basis: *15.53 %*

Extraction methods:

Alkaline – Isoelectric Point extraction

Microwave-Assisted Alkaline Extraction

Ultrasound-Assisted Alkaline extraction

Alkaline – Isoelectric point extraction Extraction Parameters considered:

- 1. Extraction Temperature (Room temperature, 50°C and 70°C)
- 2. Solid: Solvent Ratio (1:5, 1:10 and 1:20)
- 3. **Alkaline pH** (9-12) and **Acidic pH** (3-6)
 - Solubility curve determined
- Suitable pH of 11-3.9 was decided for optimal extraction

Microwave Assisted Extraction was done considering different powers (60%, 80% and 100%) while keeping the time constant for 3 minutes.

Ultrasonic assisted extraction (300W) Was done considering different durations at 100% amplitude (5 minutes, 15 minutes and 30 minutes).

Protein Content and Protein Recovery yield

Protein recovery yield ranged between and 27.6% and 36.31% MWAE and USAE were able to increase the protein recovery yield while reducing the extraction time significantly

Functional properties of extracted proteins using MWAE and **USAE** were enhanced

Our Products

	Alt-protein Source	Products to be Developed			
	Tomato Pomace	Fermented vegetable pickle in protein enriched solution			
- Person	10111410 1 011440	Protein powder as an ingredient			
	Tomato Leaf	Fermented vegetable pickle in protein enriched solution			
	romato Bar	Protein powder as an ingredient			
	Faba Beans	Easy mix vegan/vegetarian meatballs: A powder mix to prepare meat ball analogues			
		Protein powder as an ingredient			
	Sesame Cake	Tahini enriched with sesame protein			
	Sesame Care	Protein powder as an ingredient			
	Date by-product Protein powder as an ingredient				
W .	Microalgae	Protein powder as an ingredient			
×1/2	wiicibaigae	Capsules as supplement			

	Alt-protein Source	Products to be Developed				
		Powder as food ingredient				
	Mycoprotein	Capsules as supplement				
		Dessert				
	Algae/Date/ Sesame cake	Dairy substitutes				
	<u> </u>	Protein powder as an ingredient				
	Insects	Food products will be determined based on consumer studies (e.g. sport nutrition snack bars; meat and fish analogues)				
>		Animal feed				
	Lentil	Protein powder as an ingredient				
800	Chia Seed	Protein powder as an ingredient				
	M-11	Protein powder as an ingredient				
	Mallow	Capsules as supplement				

Consumers' Acceptance

Focus Group Studies in Türkiye, Tunisia & Portugal

- Key purchasing decisions are driven by price, convenience, and trust in familiar brands.
- Personal recommendations from family or friends hold more weight than marketing or studies in influencing food choices.
- Meat is culturally associated with a complete meal, with a strong preference for local, fresh market ingredients over supermarket options.
- There is **resistance to new ingredients** or deviations from traditional preparation methods, as these changes can be seen as disrespectful.
- Familiarity with ingredients, like dates and sesame, increases acceptance of new products.

Consumers' Acceptance

Product-Specific Insights

- *Insect proteins*: Disliked in recognizable forms; better accepted as powders. Hygiene, health benefits, and sustainability should be emphasized.
- *Mycoproteins*: Accepted if taste and texture are good; require more consumer education.
- *By-product proteins (dates, sesame, tomato)*: Higher acceptance due to familiarity and perceived sustainability.

Marketing Recommendations

- Tailor pricing strategies to economic conditions.
- Use a mix of advertising, consumer promotions, and social media—especially influencer marketing for younger audiences.
- Ensure culturally sensitive messaging to build trust and interest.

Integrating Consumer Voices into Innovation

Our iterative, multimethod approach ensures consumers are not just subjects of study — they are co-creators in shaping viable, desirable, and culturally aligned alternative protein products

Visual Summary of ProxIMed

Traditional alternative protein sources

Faba Bean Chia Seed

Mallow

Tomato Leaves

Aquatic sources

Duckweed Microalgae **Microbial sources**

Terrestrial sources

Mycoprotein

Insects

Agri-food by products

Tomato pomace Dates by products Sesame cake

Market Launch of the New Alt-Proteins

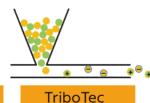
With the help of industrial partners (TAT, UL, FFL, PS), selected products will be launched in Turkish and Tunisian markets.

Pre-processing/Extraction/Fractionation Methods

Microwave Heating

Microwave Vacuum Drying

Supercritical Fluid Extraction


Ultrasonication(US)

In Liquid Plasma

Microfluidization

Product Nutrition, Safety & Health Aspects

Bio-accessibility

Bioavailability

Consumer

Quality

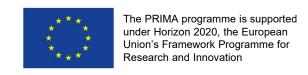
Sensory

Economic

Sustainability

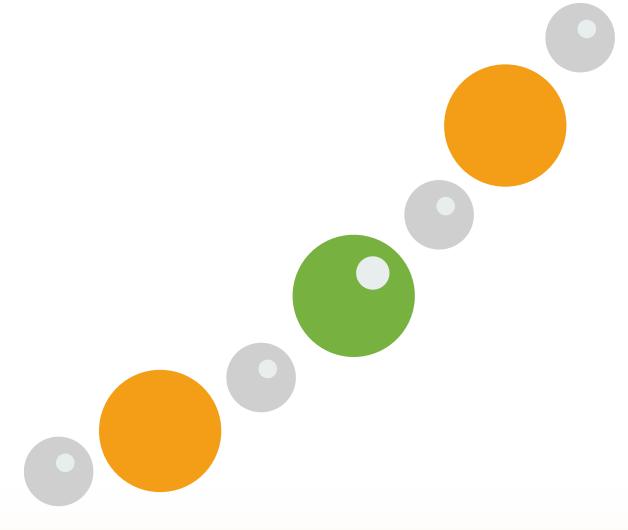
Thank you!

The PRIMA programme is supported under Horizon 2020, the European Union's Framework Programme for Research and Innovation



Thank you for your attention!

Happy to have your questions & comments.





Back up



Our Vision

"A future where alternative protein sources redefine diets, promoting health and sustainability."

- In this vision, ProxIMed envisions a shift towards protein sources that not only meet dietary needs but also align with ecological and economic goals.
- > By integrating low-input and available raw materials with innovative extraction processes, ProxIMed seeks to create a paradigm shift in the way people perceive and consume proteins in the Mediterranean.
- The vision extends beyond product development, aiming to instill a long-lasting positive impact on health, the environment, and the overall well-being of communities in the region.

Our Partners

Middle East Technical University (METU) - **TURKIYE**

American University of Berut (AUB) - LEBANON

Focus Foodlabs (FFL) - GERMANY

TAT Gida Inc. - TURKIYE

University of Sfax (UoS)- TUNISIA

AINIA- SPAIN ainia

Arid Regions Institute (IRA)- TUNISIA

Proteinsecta (PS) - SPAIN

HSWT - GERMANY

University of Parma (UNIPR) - ITALY

Assiut University (AU)- EGYPT

Prof. Dr. Menrad GmbH

Green Survey (GS)- **GERMANY**

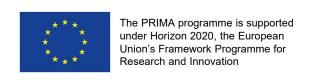
Aristotle University Thessaloniki (AUTh) - GREECE

Uluova Dairy Company (UL) - TURKIYE

Malta College of Arts, Science and Technology (MCAST)

MALTA

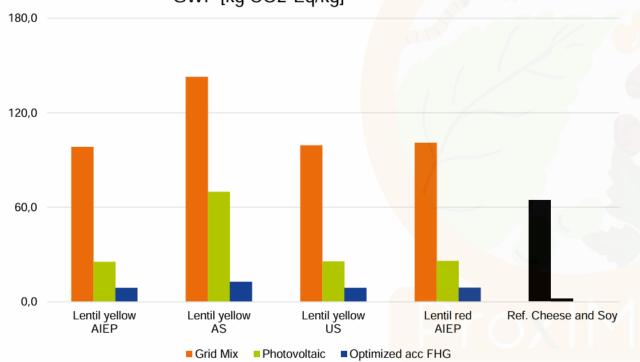
Universidade Catolica Portuguesa (UCP) - PORTUGAL


Deutsche Institut für Lebensmittel (DIL) - GERMANY

Work Packages

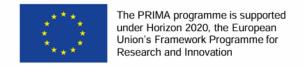
Work Packages

	•						
WP#	WP Title	Participant #	Lead Participant	Start Month	End Month		
1	Management and Coordination	1	HSWT1	1	48		
2	Consumers' acceptance	1	HSWT2	1	48		
3	Protein production through innovative technologies	2	METU	3	42		
4	Product development and sensorial evaluation	10	AINIA	12	48		
5	Economic and Environmental assessment	3	GS	1	48		
6	Health, Nutrition & Safety Aspects	7	AUTh	6	48		
7	Business model development	1	HSWT3	24	48		
8	Dissemination and Communication Activities	2	METU	1	48		



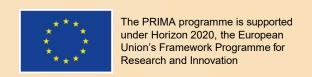
First Life Cycle Assessment results

Interpolation of optimizing according to literature


Protein from Lentil GWP [kg CO2-Eq/kg]

- Application on lentil protein shows the potential: down to ~9 kg CO₂-Eq/kg
- Able to compete with established protein products

Source.


Wu et al. (2024) A life cycle assessment of protein production from wheatgrass: Optimization potential of a novel vertical farming system; in Elsevier Sustainable Production and Consuption; https://doi.org/10.1016/j.spc.2024.08.031

Task 3.2: Production of proteins from duckweed (also known as water lentil), chia seed, and lentil (HSWT1)

Traditional Source: Lentil (Lens Culinaris Medik.)

Alkaline Solubilisation

Central Composition Design

Factor	Min. value	Max. value					
рН	7	11					
Concentration	5%	20%					
Temperature	20°C	50°C					
Time	60 min	120 min					

	Factor	Selected optimum values
	рН	9
	Concentration	5%
	Temperature	50°C
	Time	30 min

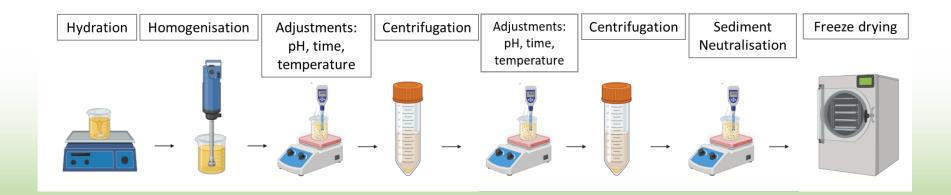
Yellow lentil

Red lentil

Green lentil

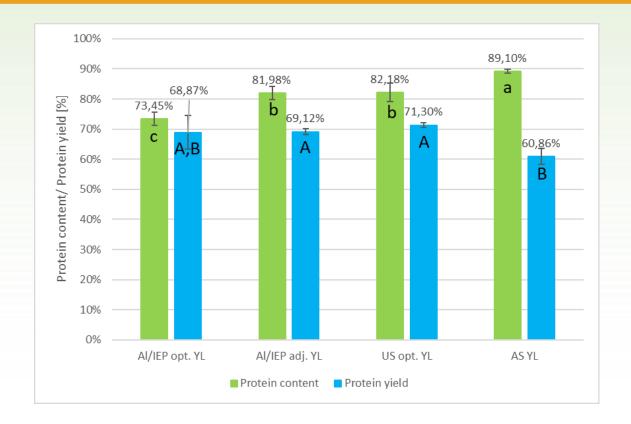
Proteinyield Fit	94,18%	-	84,55%
Real Proteinyield	92,10%	91,32%	-
Real Protein content	60 10%	64 15%	-

Isoelectric Precipitation


Box-Behnken-Trialplan

Factor	Min. value	Max. value	
рН	4	5	
Temperature	4°C	50°C	
Time	30 min	90 min	

Factor	Selected optimum			
	values			
pН	5			
Temperature	RT			
Time	30 min			


Proteinyield Fit	70,11%	-	-
Real Proteinyield	69,45%	-	-
Real Protein content	85,79%	-	-



Traditional Source: Lentil

Protein Production for Porto

Alkaline Solubilisation

Isoelectric Precipitation

15.77%

15.17g

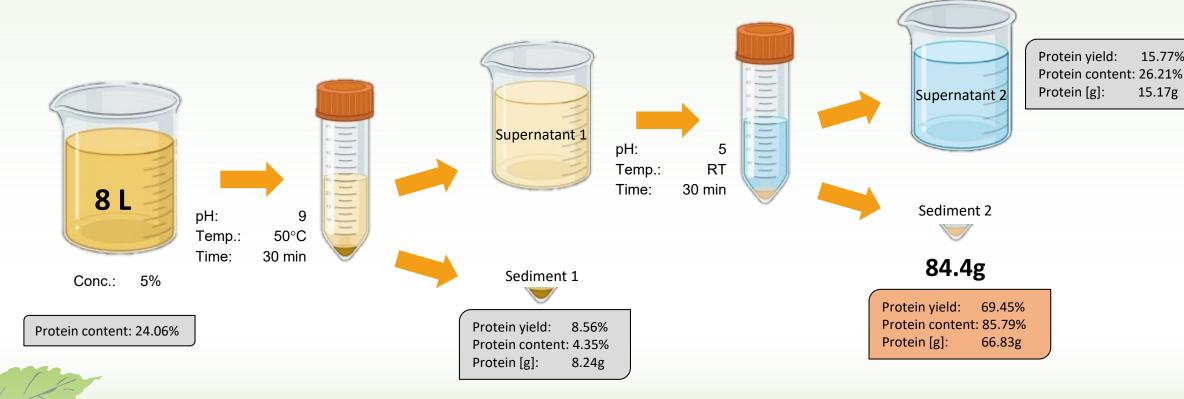


Table 12 Amino acid score estimated for duckweed samples compared to the requirements set by FAO, 2011 for children (from 3 to 18 years) and adults

Children (3–18 years)	His	Ile	Leu	Lys	SAA	AAA	Thr	Trp	Val
LG flour	1.15	1.21	1.12	0.52	1.34	1.66	1.24	1.16	1.14
LG-C	1.30	1.51	1.36	0.81	1.62	2.13	1.76	0.97	1.45
LG-US-C	1.51	1.64	1.57	0.94	1.63	2.45	1.83	1.30	1.51
LG-UF	1.05	1.40	1.22	0.87	1.34	1.76	1.68	0.90	1.38
LG-US-UF	1.31	1.57	1.47	0.85	1.62	2.19	1.81	1.16	1.47
Adults	His	Ile	Leu	Lys	SAA	AAA	Thr	Trp	Val
LG flour	1.22	1.21	1.16	0.55	1.40	1.79	1.34	1.28	1.17
LG-C	1.38	1.51	1.41	0.87	1.69	2.30	1.91	1.06	1.48
LG-US-C	1.61	1.64	1.62	1.01	1.70	2.64	1.98	1.43	1.55
LG-UF	1.12	1.40	1.26	0.93	1.40	1.90	1.83	0.99	1.42
LG-US-UF	1.40	1.57	1.52	0.91	1.69	2.36	1.97	1.28	1.50

