

Molecular characterization and allergenicity assessment of novel protein ingredients

Prof. Tullia Tedeschi-Dep. Food and Drug, University of Parma, Italy

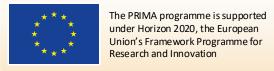
17 Partners 10 Countries 8 Work packages

"Exploration and Implementation of Products with Alternative Proteins in Mediterranean Region"

our role in WP6

PROTEIN CHARACTERIZATION

Protein content

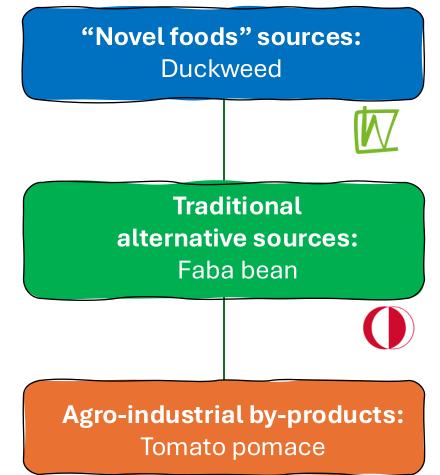

Protein profile

Protein quality (Amino acids)

Protein digestibility

ALLERGENICITY POTENTIAL ASSESSMENT

Possibility of adverse reactions in sensitized patients


SAMPLES

Protein extracts

Protein characterization

Kjeldahl method

Total protein content analysis

SDS-PAGE

Protein profile analysis

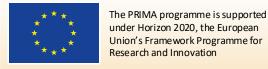
UPLC-MS

Amino acids analysis:

(essential AAs,
actual conversion

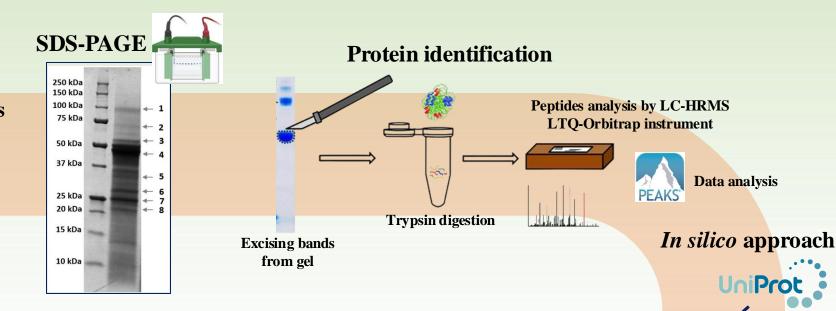
factor, AA score)

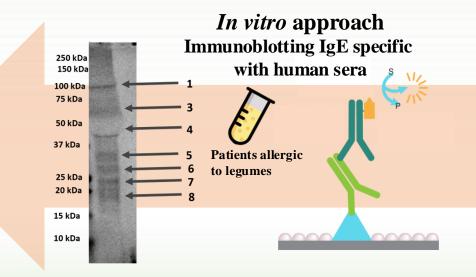
Allergenicity potential assessment

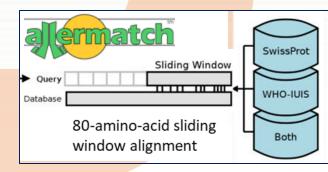

In vitro immunoblotting assay

In silico analysis

Possibility of adverse reactions in sensitized patients



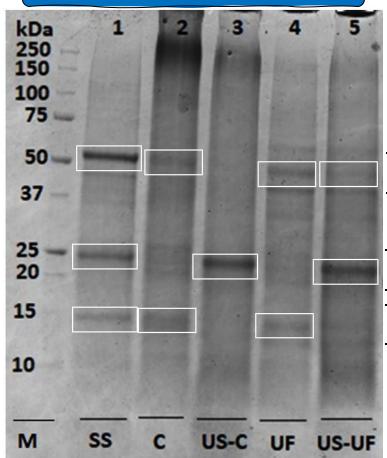

Allergenic potential of alternative proteins


Protein extracts

- ☐ HR-MS coupled with *in silico* is efficient for assessment of the allergenic potential of proteins
- ☐ Immunoblotting assays with sera of patients with positive specific IgE to known legume allergens, demonstrated cross-reactivity with other sources of proteins

Sequence alignment with known allergens

ProxIMed



NOVEL FOODS: Duckweed (Lemna gibba)

UNIVERSITÀ DI PARMA

SDS-PAGE analysis

TOTAL PROTEIN CONTENT (%)

Sample	AAs sum	General CF: 6.25	Estimated CF: 5.8 *
SS	23.3 ± 0.86°	39.83 ± 0.18ª	36.96 ± 0.12 ^b
С	51.0 ± 0.58°	69.55 ± 0.79ª	64.54 ± 0.52 ^b
US-C	41.1 ± 0.63°	52.36 ± 0.05ª	48.59 ± 0.03 ^b
UF	42.2 ± 1.42°	58.82 ± 0.81ª	54.59 ± 0.53 ^b
US-UF	42.0 ± 0.50°	54.86 ± 1.07 ^a	50.91 ± 0.70 ^b

* Actual conversion factor (from total amino acids content)

Large subunits of RuBisCo (56 kDa)

Ribulose-1,5-bisphosphate carboxylase/oxygenase

Chlorophyll a-b binding protein (25 kDa)

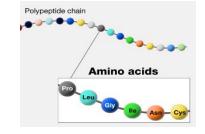
Small subunits of RuBisCo (14 kDa)

IN SILICO ANALYSIS

Preliminary insight on homologies with other known allergens

Limited information on protein existence of some Lemna gibba proteins

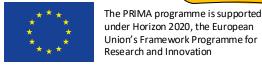
Union's Framework Programme for Research and Innovation


Protein AAs sequence

Cross reactivity:

sequence homology

> 35 % over 80 AAs window (7).


Sequence homology > 70 %: high probability of cross-reactivity

Sequence homology < 50 %: rare cross-reactivity (8)

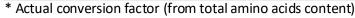
Possible cross-reactivity with spinach and celery

Need of further studies with in vitro immunoblotting assays

DO NOT SHARE

😝 🔰 🛅 🗿

TRADITIONAL ALTERNATIVE PROTEINS: Faba bean (Vicia faba)


EFFOST 2024 Special session 10 13th November 2024

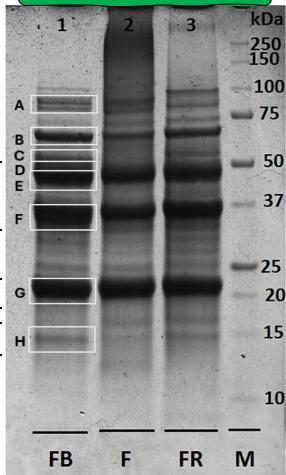
TOTAL PROTEIN CONTENT (%)

Sample	AAs sum	Literature CF: 5.4 (10)	Estimated CF: 5.5 *
F	65.7 ± 0.49^{a}	64.6 ± 0.10 ^b	65.8 ± 0.10^{a}
FB	75.5 ± 1.13ª	73.2 ± 0.28 ^b	74.6 ± 0.29 ^{ab}
FR	n.a.	73.1 ± 0.68	74.4 ± 0.69*

Probable

cross-reactivity with
other legumes
(higher with pea,
lentil, soy)

In vitro immunoblotting assay

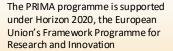

A, B, C: **Convicilin** (95, 73, 55 kDa)

D, E, F: **Vicilin** (50, 49, 35 kDa)

G: Beta chain of legumin type B (22 kDa)

H: **Albumin** (15 kDa)

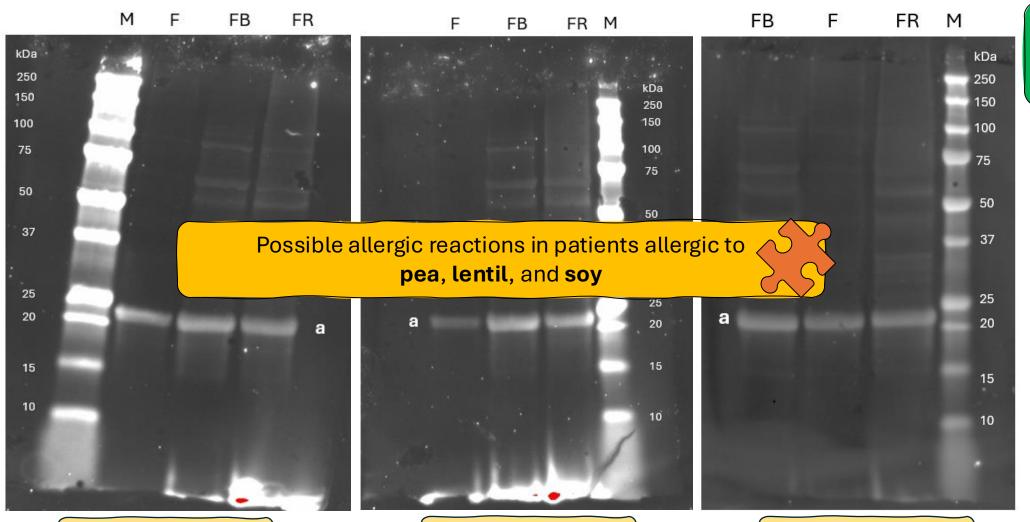
SDS-PAGE analysis



FB: bleached faba bean extract (lane 1); F: faba bean extract (lane 2); FR: reference faba bean extract (lane 3); M: markers (kDa)

(f) У in Ø

ON SOCIAL ME



TRADITIONAL ALTERNATIVE PROTEINS: Faba bean (Vicia faba)

EFFOST 2024 Special session 10 13th November 2024

IN VITRO IMMUNOBLOTTING ASSAY

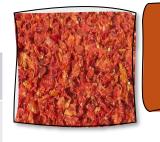
Most intense **Legumin B beta chain**(22 kDa, band a)
in all samples

Pea allergy

Soy allergy

Lentil allergy

The PRIMA programme is supported under Horizon 2020, the European Union's Framework Programme for Research and Innovation



AGRO-INDUSTRIAL BY-PRODUCTS: Tomato pomace

kDa

TOTAL PROTEIN CONTENT (%) ± SD

Sample	AAs sum	Lit. CF: 5.84 (12)	Est. CF: 5.59
Т	36.0 ± 1.25°	40.8 ± 0.16 ^a	39.1 ± 0.15 ^b

SDS-PAGE (reducing conditions, 50 µg of protein)

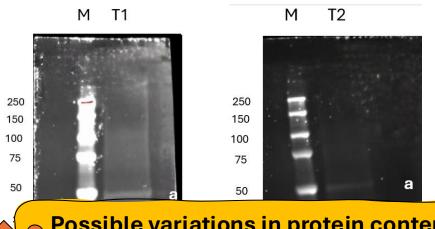
Froteins mainly from seeds
PG2 and ns-LTP
high in peels

Acid beta-fructofuranosidase (βFRU) (20 kDa)

Polygalacturonase-2 (PG2) (49 kDa)

Pectinase (PE) (35 kDa)

Non-specific lipid-transfer protein (ns-LTP) (9 kDa)



AGRO-INDUSTRIAL BY-PRODUCTS: Tomato pomace

IN VITRO IMMUNOBLOTTING ASSAY

Tomato allergens well characterized on

Possible variations in protein content and allergens profile based on type of product (seeds, pulp and peel ratio)

Crude tomato allergy

Cooked tomato allergy

Sola l PG * allergen

Sola l 2

allergen

Most reactive Polygalacturonase-2 (PG2)

(49 kDa, band a)

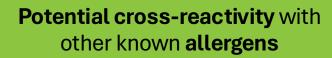
Acid beta-fructofuranosidase (βFRU)

(20 kDa, band c)

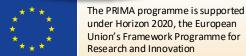
Immunoreactivity towards **both sera**

* Not in WHO-IUIS Official Nomenclature List

ALLERGENICITY POTENTIAL ASSESSMENT

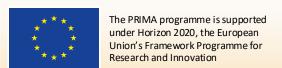

Tailored to each protein matrix

Significant role of **level of knowledge about specific proteins** in the assessment process


Further studies on:

Possible impacts of **applied treatments** in modulating the **allergenicity**

Future perspective → Protein identification with mass spectrometry



Bioorganic and Food Chemistry Unit- Dep. Food and Drug - University of Parma

Sara Cutroneo Luisa Calcinai Barbara Prandi

Thank you all for your kind attention

